Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Anesthesiology ; 140(3): 430-441, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38064715

ABSTRACT

BACKGROUND: Exaggerated lung strain and stress could damage lungs in anesthetized children. The authors hypothesized that the association of capnoperitoneum and lung collapse in anesthetized children increases lung strain-stress. Their primary aim was to describe the impact of capnoperitoneum on lung strain-stress and the effects of an individualized protective ventilation during laparoscopic surgery in children. METHODS: The authors performed an observational cohort study in healthy children aged 3 to 7 yr scheduled for laparoscopic surgery in a community hospital. All received standard protective ventilation with 5 cm H2O of positive end-expiratory pressure (PEEP). Children were evaluated before capnoperitoneum, during capnoperitoneum before and after lung recruitment and optimized PEEP (PEEP adjusted to get end-expiratory transpulmonary pressure of 0), and after capnoperitoneum with optimized PEEP. The presence of lung collapse was evaluated by lung ultrasound, positive Air-Test (oxygen saturation measured by pulse oximetry 96% or less breathing 21% O2 for 5 min), and negative end-expiratory transpulmonary pressure. Lung strain was calculated as tidal volume/end-expiratory lung volume measured by capnodynamics, and lung stress as the end-inspiratory transpulmonary pressure. RESULTS: The authors studied 20 children. Before capnoperitoneum, mean lung strain was 0.20 ± 0.07 (95% CI, 0.17 to 0.23), and stress was 5.68 ± 2.83 (95% CI, 4.44 to 6.92) cm H2O. During capnoperitoneum, 18 patients presented lung collapse and strain (0.29 ± 0.13; 95% CI, 0.23 to 0.35; P < 0.001) and stress (5.92 ± 3.18; 95% CI, 4.53 to 7.31 cm H2O; P = 0.374) increased compared to before capnoperitoneum. During capnoperitoneum and optimized PEEP, children presenting lung collapse were recruited and optimized PEEP was 8.3 ± 2.2 (95% CI, 7.3 to 9.3) cm H2O. Strain returned to values before capnoperitoneum (0.20 ± 0.07; 95% CI, 0.17 to 0.22; P = 0.318), but lung stress increased (7.29 ± 2.67; 95% CI, 6.12 to 8.46 cm H2O; P = 0.020). After capnoperitoneum, strain decreased (0.18 ± 0.04; 95% CI, 0.16 to 0.20; P = 0.090), but stress remained higher (7.25 ± 3.01; 95% CI, 5.92 to 8.57 cm H2O; P = 0.024) compared to before capnoperitoneum. CONCLUSIONS: Capnoperitoneum increased lung strain in healthy children undergoing laparoscopy. Lung recruitment and optimized PEEP during capnoperitoneum decreased lung strain but slightly increased lung stress. This little rise in pulmonary stress was maintained within safe, lung-protective, and clinically acceptable limits.


Subject(s)
Laparoscopy , Pulmonary Atelectasis , Child , Humans , Lung , Respiration, Artificial , Cohort Studies
2.
Ultrasound J ; 15(1): 10, 2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36774442

ABSTRACT

BACKGROUND: Alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV) is a lethal neonatal lung disorder characterized by the decrease of the alveolar units, abnormalities in the air-blood barrier of the lung, and impaired gas exchange. Typically, it affects a full-term newborn; the symptoms usually start within a few hours after birth, resulting in severe respiratory distress and pulmonary hypertension. In most of the cases, this disorder is refractory to conventional pulmonary support. CASE PRESENTATION: We report a case of a newborn male of 29 weeks gestational age, with birth weight of 850 g and intrauterine growth restriction. Severe respiratory distress appeared a few minutes after birth; non-invasive ventilatory support was provided in the delivery room and, as a consequence of persistent respiratory failure, he was admitted to the neonatal intensive care unit (NICU) where mechanical ventilation was required. Due to the symptoms and pulmonary ultrasound pattern suggestive of respiratory distress syndrome, surfactant treatment was administered. Lung ultrasound (LU) was used for monitoring the responsiveness to surfactant; severe pulmonary hypertension ensued, followed by respiratory failure, refractory shock, and death within 48 h. Owing to the poor response to the established therapy, ACD/MPV was suspected. The diagnosis was confirmed through autopsy. The main goal of this case report is to show the role of LU for monitoring the evolution of this disorder. CONCLUSION: LU could provide essential information to help diagnose and follow-up the underlying cause of persistent pulmonary hypertension of the newborn in an earlier and more effective way than chest X-ray. LU is suitable for routine monitoring of lung disease in the NICU.

3.
Arch Argent Pediatr ; 120(6): e246-e254, 2022 12.
Article in English, Spanish | MEDLINE | ID: mdl-36374061

ABSTRACT

Lung ultrasound (LU) has gained ground in the diagnosis of most respiratory conditions present since birth. It is highly sensitive to variations in air content and pulmonary fluids and functions as a true densitometer of the lung parenchyma with a sensitivity superior to that of radiological studies. A LU is a non-invasive, fast and easy tool that can be used at the patient's bedside and, unlike conventional radiology, does not pose risks of radiation. In addition, a LU provides real-time dynamic information in a variety of neonatal settings and, like heart and brain examinations, can be performed by the neonatologist. The objective of this article is to describe the main artifacts and images that can be found in the neonatal LU, as well as the different aeration patterns, and to highlight their usefulness in the study of the most frequent respiratory disorders of neonates.


La ecografía pulmonar (EP) ha ganado terreno en el diagnóstico de la mayoría de las patologías respiratorias presentes desde el nacimiento. Es altamente sensible a las variaciones del contenido de aire y fluidos pulmonares, y constituye un verdadero densitómetro del parénquima pulmonar con una sensibilidad superior a la de los estudios radiológicos. Es no invasiva, rápida, fácil de realizar junto a la cama del paciente y, a diferencia de la radiología convencional, no presenta riesgos de radiación. Además, nos proporciona información dinámica en tiempo real en una variedad de entornos neonatales y, al igual que las evaluaciones del corazón y el cerebro, puede ser realizada por el neonatólogo. El objetivo de esta publicación es mostrar los principales artefactos e imágenes que se pueden encontrar en la EP neonatal, así como los diferentes patrones de aireación, y destacar su utilidad en el estudio de los trastornos respiratorios más frecuentes del neonato.


Subject(s)
Neonatology , Pneumonia , Humans , Infant, Newborn , Lung/diagnostic imaging , Ultrasonography , Thorax
4.
Ultrasound J ; 14(1): 33, 2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35907076

ABSTRACT

BACKGROUND: Pain after thoracic surgery impairs lung function and increases the rate of postoperative pulmonary complications. Ultrasound-guided percutaneous cryoanalgesia of intercostal nerves constitutes a valid option for adequate postoperative analgesia. A key issue for a successful cryoanalgesia is placing the cryoprobe tip close to the intercostal nerve. This report describes an ultrasound technique using a high-resolution ultrasound probe to accomplish this goal. FINDINGS: Images of five anesthetized patients undergoing uniportal video-thoracoscopic surgeries are used as clinical examples. In the lateral position, a high-frequency 12 MHz probe is placed longitudinally at 5-7 cm parallel to the spine at the 4th, 5th, and 6th ipsilateral intercostal spaces. Ultrasound images detect the intercostal neurovascular bundle and a 14G angiocath is placed beside the nerve. The cryoprobe is inserted throughout the 14G catheter and the cryoanalgesia cycle is performed for 3 min. Two ultrasound signs confirm the right cryoprobe position close to the nerve: one is a color Doppler twinkling artifact that is seen as the quick shift of colors that delineates the cryoprobe contour. The other is a spherical hypoechoic image caused by the ice ball formed at the cryoprobe tip. CONCLUSIONS: Ultrasound images obtained with a high-frequency probe allow precise location of the cryoprobe tip close to the intercostal nerve for cold axonotmesis.

5.
J Cardiothorac Vasc Anesth ; 36(8 Pt B): 2900-2907, 2022 08.
Article in English | MEDLINE | ID: mdl-35283043

ABSTRACT

OBJECTIVES: To test the clinical performance of a novel continuous noninvasive cardiac output (CO) monitoring based on expired carbon dioxide kinetics in cardiac surgery patients. DESIGN: A prospective feasibility pragmatic clinical study. SETTING: A single-center, large community hospital. PARTICIPANTS: Thirty-two patients undergoing cardiac surgery were studied during the intraoperative (before cardiopulmonary bypass) and postoperative (in the intensive care unit before extubation) periods. INTERVENTIONS: CO was measured simultaneously by the continuous capnodynamic method and by transpulmonary thermodilution during changes in the patient's hemodynamic and/or respiratory conditions. MEASUREMENTS AND MAIN RESULTS: The current recommended comparative statistics for CO measurement methods were analyzed, including bias, precision, and percentage error obtained from Bland-Altman analysis, and concordance between methods obtained from the four-quadrant plot analysis to evaluate the trending ability. Bias ± limits of agreement and percentage error were -0.6 (-1.9 to +0.8; 95% CI of 3.73-5.25) L/min and 31% (n = 147 measurements) for the intraoperative period, -0.8 (-2.4 to +0.9; 95% CI of 3.03-5.21) L/min and 41% (n = 66) for the postoperative period, and -0.6 (-2.1 to +0.8; 95% CI of 3.74-5.00) L/min and 34% (n = 213) for the pooled data. The trending analysis obtained a concordance of 82% (n = 65) for the intraoperative and 71% (n = 24) for the early postoperative periods. Aggregation of both data sets gave a concordance of 79% (n = 89). CONCLUSIONS: The continuous capnodynamic method was reliable and in good agreement with the reference method, and had an accuracy and trending ability good enough to make it a possible future alternative for hemodynamic monitoring in the studied population of elective adult cardiac surgery patients.


Subject(s)
Cardiac Surgical Procedures , Monitoring, Intraoperative , Adult , Cardiac Output , Cardiac Surgical Procedures/methods , Humans , Monitoring, Intraoperative/methods , Prospective Studies , Pulmonary Artery , Reproducibility of Results , Thermodilution/methods
6.
Eur J Anaesthesiol ; 38(1): 41-48, 2021 01.
Article in English | MEDLINE | ID: mdl-33009190

ABSTRACT

BACKGROUND: Continuous positive airway pressure (CPAP) prevents peri-operative atelectasis in adults, but its effect in children has not been quantified. OBJECTIVE: The aim of this study was to evaluate the role of CPAP in preventing postinduction and postoperative atelectasis in children under general anaesthesia. DESIGN: A randomised controlled study. SETTING: Single-institution study, community hospital, Mar del Plata. Argentina. PATIENTS: We studied 42 children, aged 6 months to 7 years, American Society of Anesthesiologists physical status class I, under standardised general anaesthesia. INTERVENTIONS: Patients were randomised into two groups: Control group (n = 21): induction and emergence of anaesthesia without CPAP; and CPAP group (n = 21): 5 cmH2O of CPAP during induction and emergence of anaesthesia. Lung ultrasound (LUS) imaging was performed before and 5 min after anaesthesia induction. Children without atelectasis were ventilated in the same manner as the Control group with standard ventilatory settings including 5 cmH2O of PEEP. Children with atelectasis received a recruitment manoeuvre followed by standard ventilation with 8 cmH2O of PEEP. Then, at the end of surgery, LUS images were repeated before tracheal extubation and 60 min after awakening. MAIN OUTCOME MEASURES: Lung aeration score and atelectasis assessed by LUS. RESULTS: Before anaesthesia, all children were free of atelectasis. After induction, 95% in the Control group developed atelectasis compared with 52% of patients in the CPAP group (P < 0.0001). LUS aeration scores were higher (impaired aeration) in the Control group than the CPAP group (8.8 ±â€Š3.8 vs. 3.5 ±â€Š3.3 points; P < 0.0001). At the end of surgery, before tracheal extubation, atelectasis was observed in 100% of children in the Control and 29% of the CPAP group (P < 0.0001) with a corresponding aeration score of 9.6 ±â€Š3.2 and 1.8 ±â€Š2.3, respectively (P < 0.0001). After surgery, 30% of children in the Control group and 10% in the CPAP group presented with residual atelectasis (P < 0.0001) also corresponding to a higher aeration score in the Control group (2.5 ±â€Š3.1) when compared with the CPAP group (0.5 ±â€Š1.5; P < 0.01). CONCLUSION: The use of 5 cmH2O of CPAP in healthy children of the studied age span during induction and emergence of anaesthesia effectively prevents atelectasis, with benefits maintained during the first postoperative hour. TRIAL REGISTRY: Clinicaltrials.gov NCT03461770.


Subject(s)
Continuous Positive Airway Pressure , Pulmonary Atelectasis , Adult , Anesthesia, General/adverse effects , Child , Humans , Lung/diagnostic imaging , Pulmonary Atelectasis/diagnostic imaging , Pulmonary Atelectasis/etiology , Pulmonary Atelectasis/prevention & control , Ultrasonography
7.
Ultrasound J ; 12(1): 34, 2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32661776

ABSTRACT

BACKGROUND: Pulmonary atelectasis in anesthetized children is easily reverted by lung recruitment maneuvers. However, the high airways pressure reached during the maneuver could negatively affect hemodynamics. The aim of this study is to assess the effect and feasibility of a postural lung recruitment maneuver (P-RM); i.e., a new maneuver that opens up the atelectatic lung areas based on changing the child's body position under constant ventilation with moderated driving pressure (12 cmH2O) and of positive end-expiratory pressure (PEEP, 10 cmH2O). Forty ASA I-II children, aged 6 months to 7 years, subjected to general anesthesia were studied. Patients were ventilated with volume control mode using standard settings with 5 cmH2O of PEEP. They were randomized into two groups: (1) control group (C group, n = 20)-ventilation was turned to pressure control ventilation using a fixed driving pressure of 12 cmH2O. PEEP was increased from 5 to 10 cmH2O during 3 min maintaining the supine position. (2) P-RM group (n = 20)-patients received the same increase in driving pressure and PEEP, but they were placed, respectively, in the left lateral position, in the right lateral position (90 s each), and back again into the supine position after 3 min. Then, ventilation returned to baseline settings in volume control mode. Lung ultrasound-derived aeration score and respiratory compliance were assessed before (T1) and after (T2) 10 cmH2O of PEEP was applied. RESULTS: At baseline ventilation (T1), both groups showed similar aeration score (P-RM group 9.9 ± 1.9 vs C group 10.4 ± 1.9; p = 0.463) and respiratory compliance (P-RM group 15 ± 6 vs C group 14 ± 6 mL/cmH2O; p = 0.517). At T2, the aeration score decreased in the P-RM group (1.5 ± 1.6 vs 9.9 ± 2.1; p < 0.001), but remained without changes in the C group (9.9 ± 2.1; p = 0.221). Compliance was higher in the P-RM group (18 ± 6 mL/cmH2O) when compared with the C group (14 ± 5 mL/cmH2O; p = 0.001). CONCLUSION: Lung aeration and compliance improved only in the group in which a posture change strategy was applied.

8.
J Clin Monit Comput ; 34(5): 1015-1024, 2020 Oct.
Article in English | MEDLINE | ID: mdl-31654282

ABSTRACT

To evaluate the use of non-invasive variables for monitoring an open-lung approach (OLA) strategy in bariatric surgery. Twelve morbidly obese patients undergoing bariatric surgery received a baseline protective ventilation with 8 cmH2O of positive-end expiratory pressure (PEEP). Then, the OLA strategy was applied consisting in lung recruitment followed by a decremental PEEP trial, from 20 to 8 cmH2O, in steps of 2 cmH2O to find the lung's closing pressure. Baseline ventilation was then resumed setting open lung PEEP (OL-PEEP) at 2 cmH2O above this pressure. The multimodal non-invasive variables used for monitoring OLA consisted in pulse oximetry (SpO2), respiratory compliance (Crs), end-expiratory lung volume measured by a capnodynamic method (EELVCO2), and esophageal manometry. OL-PEEP was detected at 15.9 ± 1.7 cmH2O corresponding to a positive end-expiratory transpulmonary pressure (PL,ee) of 0.9 ± 1.1 cmH2O. ROC analysis showed that SpO2 was more accurate (AUC 0.92, IC95% 0.87-0.97) than Crs (AUC 0.76, IC95% 0.87-0.97) and EELVCO2 (AUC 0.73, IC95% 0.64-0.82) to detect the lung's closing pressure according to the change of PL,ee from positive to negative values. Compared to baseline ventilation with 8 cmH2O of PEEP, OLA increased EELVCO2 (1309 ± 517 vs. 2177 ± 679 mL) and decreased driving pressure (18.3 ± 2.2 vs. 10.1 ± 1.7 cmH2O), estimated shunt (17.7 ± 3.4 vs. 4.2 ± 1.4%), lung strain (0.39 ± 0.07 vs. 0.22 ± 0.06) and lung elastance (28.4 ± 5.8 vs. 15.3 ± 4.3 cmH2O/L), respectively; all p < 0.0001. The OLA strategy can be monitored using noninvasive variables during bariatric surgery. This strategy decreased lung strain, elastance and driving pressure compared with standard protective ventilatory settings.Clinical trial number NTC03694665.


Subject(s)
Bariatric Surgery , Obesity, Morbid , Humans , Lung , Obesity, Morbid/surgery , Positive-Pressure Respiration , Respiration
9.
Rev. chil. anest ; 49(5): 640-667, 2020. ilus, tab
Article in Spanish | LILACS | ID: biblio-1512094

ABSTRACT

Lung ultrasound has had a great development in the critical patient management in the last decade. It is a safe, non-invasive and radiation-free tool that allows examining the patient at the bedside without the need for transfer. The last characteristic is particularly beneficial in patients with hypoxemia, hemodynamic instability and with high-risk of nosocomial contamination, as currently occurs in the pandemic caused by the outbreak of the new coronavirus 2019 disease (COVID-19). Lung ultrasound can be used to assess lung aeration in the patient under mechanical ventilation, evaluating the response to different strategies, personalizing lung recruitment maneuvers, and guiding the weaning process. This review describes the basic principles of lung ultrasound to obtain the images and interpret them. Lung ultrasound provides anesthesiologists, intensivists and respiratory therapists a safe and reliable tool for the diagnosis and follow-up of the main pulmonary diseases in the critical ill patient.


El ultrasonido pulmonar ha tenido un gran desarrollo en el abordaje del paciente crítico en las últimas décadas. Constituye una herramienta segura, no invasiva y libre de radiación, que permite examinar al paciente sin necesidad de traslado. Esta última característica es particularmente beneficiosa en pacientes hipóxicos, inestables hemodinámicamente o con alto riesgo de contaminación nosocomial, como ocurre actualmente con la pandemia ocasionada por el brote de la enfermedad del nuevo coronavirus 2019 (COVID-19). El ultrasonido pulmonar puede ser usado, además, para evaluar y monitorizar la aireación pulmonar en el paciente en ventilación mecánica, personalizando maniobras de reclutamiento, testeando la respuesta a diferentes estrategias ventilatorias y monitorizando el proceso de weaning. Esta revisión describe los principios básicos del ultrasonido pulmonar para la obtención de imágenes y su interpretación. Proporcionando a médicos anestesiólogos, intensivistas y kinesiólogos respiratorios una herramienta segura y confiable para el diagnóstico y seguimiento de las principales patologías pulmonares en el paciente crítico.


Subject(s)
Humans , Ultrasonics/methods , Critical Care , Lung Diseases/diagnostic imaging , Respiration, Artificial , Critical Illness , COVID-19/diagnostic imaging , Monitoring, Physiologic
10.
J Clin Monit Comput ; 33(5): 815-824, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30554338

ABSTRACT

To determine whether a classification based on the contour of the photoplethysmography signal (PPGc) can detect changes in systolic arterial blood pressure (SAP) and vascular tone. Episodes of normotension (SAP 90-140 mmHg), hypertension (SAP > 140 mmHg) and hypotension (SAP < 90 mmHg) were analyzed in 15 cardiac surgery patients. SAP and two surrogates of the vascular tone, systemic vascular resistance (SVR) and vascular compliance (Cvasc = stroke volume/pulse pressure) were compared with PPGc. Changes in PPG amplitude (foot-to-peak distance) and dicrotic notch position were used to define 6 classes taking class III as a normal vascular tone with a notch placed between 20 and 50% of the PPG amplitude. Class I-to-II represented vasoconstriction with notch placed > 50% in a small PPG, while class IV-to-VI described vasodilation with a notch placed < 20% in a tall PPG wave. 190 datasets were analyzed including 61 episodes of hypertension [SAP = 159 (151-170) mmHg (median 1st-3rd quartiles)], 84 of normotension, SAP = 124 (113-131) mmHg and 45 of hypotension SAP = 85(80-87) mmHg. SAP were well correlated with SVR (r = 0.78, p < 0.0001) and Cvasc (r = 0.84, p < 0.0001). The PPG-based classification correlated well with SAP (r = - 0.90, p < 0.0001), SVR (r = - 0.72, p < 0.0001) and Cvasc (r = 0.82, p < 0.0001). The PPGc misclassified 7 out of the 190 episodes, presenting good accuracy (98.4% and 97.8%), sensitivity (100% and 94.9%) and specificity (97.9% and 99.2%) for detecting episodes of hypotension and hypertension, respectively. Changes in arterial pressure and vascular tone were closely related to the proposed classification based on PPG waveform.Clinical Trial Registration NTC02854852.


Subject(s)
Arterial Pressure , Photoplethysmography/methods , Signal Processing, Computer-Assisted , Aged , Aged, 80 and over , Algorithms , Coronary Artery Bypass , Female , Hemodynamics , Humans , Hypertension/diagnosis , Hypotension/diagnosis , Male , Middle Aged , Pilot Projects , Prospective Studies , Reproducibility of Results , Sensitivity and Specificity , Stroke Volume , Vasoconstriction , Vasodilation
11.
Rev. chil. anest ; 47(2): 110-124, jun. 11 2018.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-965999

ABSTRACT

Point-of-care ultrasonography has become a widely used diagnostic tool in the intensive care units and during perioperative settings. Nowadays, ultrasound has been also employed to evaluate diaphragmatic function. Some advantages of this method include safety, absence of ionizing radiation, and availability of real-time bedside examinations. The aim of this review is to promote the use of diaphragmatic ultrasound assessment among anesthesiologists and intensive care physicians. This article describes the standard diaphragmatic ultrasound technique and the knowledge required in order to monitor and diagnose diaphragmatic dysfunction; emphasizing its use in the operating room and in the different fields of clinical application.


El ultrasonido point-of-care se ha convertido en una herramienta diagnóstica ampliamente utilizada en unidades de cuidados intensivos y durante el período peri-operatorio. En la actualidad, el ultrasonido esta siendo empleado además para evaluar la función diafragmática. Las ventajas de este método incluyen seguridad, ausencia de radiación ionizante y posibilidad de realizar examinación en tiempo real a la cabecera del paciente. El objetivo de esta revisión es promover el uso de la evaluación sonográfica del diafragma para médicos anestesiólogos e intensivistas. Este artículo describe la técnica estándar de la evaluación sonográfica del diafragma y el conocimiento requerido para el diagnóstico y monitorización de la disfunción diafragmática, enfatizando el uso en quirófano y en los diferentes campos de aplicación clínica.

12.
Eur J Anaesthesiol ; 35(8): 573-580, 2018 08.
Article in English | MEDLINE | ID: mdl-29278555

ABSTRACT

BACKGROUND: Capnoperitoneum and anaesthesia impair lung aeration during laparoscopy in children. These changes can be detected and monitored at the bedside by lung ultrasound (LUS). OBJECTIVE: The aim of our study was to assess the impact of general anaesthesia and capnoperitoneum on lung collapse and the potential preventive effect of lung recruitment manoeuvres, using LUS in children undergoing laparoscopy. DESIGN: Randomised controlled study. SETTING: Single-institution study, community hospital, Mar del Plata, Argentina. PATIENTS: Forty-two children American Society of Anesthesiologists I-II aged 6 months to 7 years undergoing laparoscopy. INTERVENTIONS: All patients were studied using LUS before, during and after capnoperitoneum. Children were allocated to a control group (C-group, n=21) receiving standard protective ventilation, or to a lung recruitment manoeuvre group (RM-group) (n=21), in which lung recruitment manoeuvres were performed after recording baseline LUS images before capnoperitoneum. Loss of aeration was scored by summing a progressive grading from 0 to 3 assigned to each of 12 lung areas, based on the detection of four main ultrasound patterns: normal aeration = 0, partial loss-mild = 1, partial loss-severe = 2, total loss-consolidation = 3. MAIN OUTCOME MEASURES: Lung aeration score and atelectasis assessed by ultrasound. RESULTS: Before capnoperitoneum and recruitment manoeuvres in the treated group the two groups presented similar ultrasound scores (5.95 ±â€Š4.13 vs. 5.19 ±â€Š3.33, P = 0.5). In the RM-group, lung aeration significantly improved both during (2.71 ±â€Š2.47) and after capnoperitoneum (2.52 ±â€Š2.86), compared with the C-group (6.71 ±â€Š3.54, P < 0.001, and 8.48 ±â€Š3.22, P < 0.001, respectively). There was no statistically significant difference in the percentage of atelectasis before capnoperitoneum and recruitment manoeuvres in the RM-group (62%) and in the C-group (47%, P = 0.750). However, during capnoperitoneum, only 19% of the RM-group had atelectasis compared with 80% in the C-group (P < 0.001). CONCLUSION: The majority of children undergoing laparoscopy have anaesthesia-induced atelectasis. In most cases, lung collapse due to capnoperitoneum could have been prevented by recruitment manoeuvres followed by positive-end expiratory pressure. TRIAL REGISTRY NUMBER: NCT02824146.


Subject(s)
Laparoscopy/methods , Lung/diagnostic imaging , Positive-Pressure Respiration/methods , Pulmonary Atelectasis/diagnostic imaging , Pulmonary Atelectasis/prevention & control , Child , Child, Preschool , Female , Humans , Infant , Male
13.
Crit Ultrasound J ; 9(1): 22, 2017 Oct 13.
Article in English | MEDLINE | ID: mdl-29030754

ABSTRACT

BACKGROUND: Atelectasis is a common finding in mechanically ventilated children with healthy lungs. This lung collapse cannot be overcome using standard levels of positive end-expiratory pressure (PEEP) and thus for only individualized lung recruitment maneuvers lead to satisfactory therapeutic results. In this short communication, we demonstrate by lung ultrasound images (LUS) the effect of a postural recruitment maneuver (P-RM, i.e., a ventilatory strategy aimed at reaerating atelectasis by changing body position under constant ventilation). RESULTS: Data was collected in the operating room of the Hospital Privado de Comunidad, Mar del Plata, Argentina. Three anesthetized children undergoing mechanical ventilation at constant settings were sequentially subjected to the following two maneuvers: (1) PEEP trial in the supine position PEEP was increased to 10 cmH2O for 3 min and then decreased to back to baseline. (2) P-RM patient position was changed from supine to the left and then to the right lateral position for 90 s each before returning to supine. The total P-RM procedure took approximately 3 min. LUS in the supine position showed similar atelectasis before and after the PEEP trial. Contrarily, atelectasis disappeared in the non-dependent lung when patients were placed in the lateral positions. Both lungs remained atelectasis free even after returning to the supine position. CONCLUSIONS: We provide LUS images that illustrate the concept and effects of postural recruitment in children. This maneuver has the advantage of achieving recruitment effects without the need to elevate airways pressures.

14.
Crit Ultrasound J ; 8(1): 19, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27910005

ABSTRACT

BACKGROUND: Doppler images of pulmonary vessels in pulmonary diseases associated with subpleural consolidations have been described. Color Doppler easily identifies such vessels within consolidations while spectral Doppler analysis allows the differentiation between pulmonary and bronchial arteries. Thus, Doppler helps in diagnosing the nature of consolidations. To our knowledge, Doppler analysis of pulmonary vessels within anesthesia-induced atelectasis has never been described before. The aim of this case series is to demonstrate the ability of lung ultrasound to detect the shunting of blood within atelectatic lung areas in anesthetized children. FINDINGS: Three anesthetized and mechanically ventilated children were scanned in the supine position using a high-resolution linear probe of 6-12 MHz. Once subpleural consolidations were detected in the most dependent posterior lung regions, the probe was rotated such that its long axis followed the intercostal space. In this oblique position, color Doppler mapping was performed to detect blood flow within the consolidation. Thereafter, pulsed waved spectral Doppler was applied in the previously identified vessels during a short expiratory pause, which prevented interferences from respiratory motion. Different flow patterns were identified which corresponded to both, pulmonary and bronchial vessels. Finally, a lung recruitment maneuver was performed which leads to the complete resolution of the aforementioned consolidation thereby confirming the pathophysiological entity of anesthesia-induced atelectasis. CONCLUSIONS: Lung ultrasound is a non-invasive imaging tool that not only enables the diagnosis of anesthesia-induced atelectasis in pediatric patients but also analysis of shunting blood within this consolidation.

15.
Crit Ultrasound J ; 8(1): 8, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27496127

ABSTRACT

Lung collapse is a known complication that affects most of the patients undergoing positive pressure mechanical ventilation. Such atelectasis and airways closure lead to gas exchange and lung mechanics impairment and has the potential to develop an inflammatory response in the lungs. These negative effects of lung collapse can be reverted by a lung recruitment maneuver (RM) i.e. a ventilatory strategy that resolves lung collapse by a brief and controlled increment in airway pressures. However, an unsolved question is how to assess such RM at the bedside. The aim of this paper is to describe the usefulness of lung sonography (LUS) to conduct and personalize RM in a real-time way at the bedside. LUS has favorable features to assess lung recruitment due to its high specificity and sensitivity to detect lung collapse together with its non-invasiveness, availability and simple use.

16.
Crit Ultrasound J ; 7(1): 19, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26660526

ABSTRACT

BACKGROUND: Ventilator-induced lung injury is a form of mechanical damage leading to a pulmonary inflammatory response related to the use of mechanical ventilation enhanced by the presence of atelectasis. One proposed mechanism of this injury is the repetitive opening and closing of collapsed alveoli and small airways within these atelectatic areas-a phenomenon called tidal recruitment. The presence of tidal recruitment is difficult to detect, even with high-resolution images of the lungs like CT scan. The purpose of this article is to give evidence of tidal recruitment by lung ultrasound. FINDINGS: A standard lung ultrasound inspection detected lung zones of atelectasis in mechanically ventilated patients. With a linear probe placed in the intercostal oblique position. We observed tidal recruitment within atelectasis as an improvement in aeration at the end of inspiration followed by the re-collapse at the end of expiration. This mechanism disappeared after the performance of a lung recruitment maneuver. CONCLUSIONS: Lung ultrasound was helpful in detecting the presence of atelectasis and tidal recruitment and in confirming their resolution after a lung recruitment maneuver.

18.
Anesthesiology ; 120(6): 1370-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24662376

ABSTRACT

BACKGROUND: The aim of this study was to test the accuracy of lung sonography (LUS) to diagnose anesthesia-induced atelectasis in children undergoing magnetic resonance imaging (MRI). METHODS: Fifteen children with American Society of Anesthesiology's physical status classification I and aged 1 to 7 yr old were studied. Sevoflurane anesthesia was performed with the patients breathing spontaneously during the study period. After taking the reference lung MRI images, LUS was carried out using a linear probe of 6 to 12 MHz. Atelectasis was documented in MRI and LUS segmenting the chest into 12 similar anatomical regions. Images were analyzed by four blinded radiologists, two for LUS and two for MRI. The level of agreement for the diagnosis of atelectasis among observers was tested using the κ reliability index. RESULTS: Fourteen patients developed atelectasis mainly in the most dependent parts of the lungs. LUS showed 88% of sensitivity (95% CI, 74 to 96%), 89% of specificity (95% CI, 83 to 94%), and 88% of accuracy (95% CI, 83 to 92%) for the diagnosis of atelectasis taking MRI as reference. The agreement between the two radiologists for diagnosing atelectasis by MRI was very good (κ, 0.87; 95% CI, 0.72 to 1; P < 0.0001) as was the agreement between the two radiologists for detecting atelectasis by LUS (κ, 0.90; 95% CI, 0.75 to 1; P < 0.0001). MRI and LUS also showed good agreement when data from the four radiologists were pooled and examined together (κ, 0.75; 95% CI, 0.69 to 0.81; P < 0.0001). CONCLUSION: LUS is an accurate, safe, and simple bedside method for diagnosing anesthesia-induced atelectasis in children.


Subject(s)
Anesthesia, General/adverse effects , Lung/diagnostic imaging , Pulmonary Atelectasis/chemically induced , Pulmonary Atelectasis/diagnostic imaging , Child , Child, Preschool , Echocardiography/standards , Female , Humans , Infant , Male , Pilot Projects , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...